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SUMMARY

UVFA, an underlying variable factor analysis program is described. The

theories of principal component analysis and nonlinear least squares projection

techniques are outlined and compared. Several applications from various

chemical fields are presented which show that a complete analysis of the

underlying structure and dimensionality of a chemical data set should always

include these nonlinear projection techniques.
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INTRODUCTI ON

Multivariate statistics, originally developed for applications in social

sciences, have been more and more applied to chemical data evaluation. In fact,

the statistical treatment of chemical data became a whole new branch of analytical

chemistry, called Chemometrics [1].

One of the most powerful methods in chemometrics which has been applied as

a "stand-alone" method as well as in combination with other methods is principal

component factor analysis [2] PCA. Applications range from data reduction

problems, interpretation of the underlying structure of a data set to a pre-

liminary treatment of the data bases for a path modelling analysis [3]. PCA has

been applied to e.g. mass spectral and environmental data, NMR and chromatography

data [4].

PCA assumes a linear relation among the variables. In nature, however,

most relations between physical parameters or variables are nonlinear. To

overcome this setback of linear factor analysis, algorithMs such as nonlinear

least squares,multidimensional scaling [5] and parametric mapping [6] for the

analysis of the underlying nonlinear structure of a data base have been developed.

So far, there have been no applications published of these nonlinear methods

to chemical data analysis. In the next section the theory of the different

linear and nonlinear methods is explained.

In the following an interactive program package is described which includes

not only principal component factor analysis and rotational methods, but also

nonlinear least squares projection techniques such as multidimensional scaling,

nonlinear and parametric mapping and graphical output routines. The algorithms

and the program are demonstrated on two chemical data sets.
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THEORY

The underlying relation among n measurements (e.g. melting point, dipole

moment, etc.) of a data matrix Z = (Z..) i = 1,...,m consisting of m samples
j =

is to be analyzed.

To give the measurements equal weight, they are usually scaled to unit

variance and zero mean.

In a three variable data set (n = 3) the measurement vectors can be

represented graphically in a three-dimensional space (Fig. 1).

Figure I

Factor analysis determines the dimensionality of the hyperspace necessary

to represent the data. The first factor XI is represented by the longest axis

of the hyperspace containing the data, i.e. it represents the largest amount

of variance in one dimension. The second vector X2 is represented by the

second longest axis orthogonal to the first one and so on. To obtain the r

factors necessary to represent most of the total variance of the data set,

the data matrix Z is decomposed into a factor weight matrix (factor loading

matrix) A (a i = 1,...,n and a factor score matrix P = (pij) i = I,...
i  j 1 ,...,r j I, ,r

(r<n):

Z = P AT

The columns of A are determined by calculating the eigenvectors of the

data covariance matrix C

SC - Z T Z.

The entries aij of the factor loading matrix A can be considered as the mul-

tiple correlation coefficients of the variable i with the factor j.

The factor score matrix represents the data in terms of factor coordinates

and is calculated according to



P=ZA.

This transformation is known as the Karhunen-Loeve expansion [7].

As mentioned above, the relation between physical parameter variables is

not always linear. It is, for example, possible that the data lie along a

curved line or surface (Fig. 2).

Figure 2

Linear principal component factor analysis would still come up with three

factors since the variance for all possible three dimensional orthogonal coordi-

nate systems is greater than zero in any coordinate direction. On the other

hand, there are obviously only two underlying nonlinear independent variables.

To solve this problem, nonlinear least squares projection methods have

been developed [5,6].

The distances (dij) i,j = l,...,m between all m data vectors of Z are

calculated. The data points are then arranged in an r-dimensional space

(r<n) in a way that the stress S

S =i I d ij i2

1,j

is minimal [5). The d.. denote the recalculated distances of the data points

in the lower r-dimensional space. The stress S thus renresents a measure of the

goodness of fit of the data vectors projected in the r-dimensional space compared

with their configuration in the original n dimensional space.

The different projection techniques differ mainly by a different measure

for the goodness of fit. To demonstrate the different applications for PCA,

multidimensional scaling [5] and parametric mapping [6), their optimum

theoretical results on three different two dimensional data sets (I, II, III)

are shown (Fig. 3)

Figure 3



The parametric mapping algorithm is able to determine a ring shaped one

dimensional structure of the data since it considers only local environments of

data points. Since this method does not look at the global fit of all data

points it, however, sometimes ends up with a too small dimensionality.

Although there exist programs for these nonlinear least squares methods,

they are not set up for chemical data bases. They are not input compatible with

each other and they work only as batch programs. Since these programs only

include either multidimensional scaling or parametric mapping and no linear

factor analysis program, there was a definite need for a combined package.

Such a combined underlying variable factor analysis program is described in

the next section.
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THE PROGRAI UVFA

The underlying variable factor analysis program UVFA (9] consists of a

driver routine, a set of utility routines and 21 major subroutines which perform

the actual data analysis. Since the data are stored on disk files, only the

driver routine and the utility routines have to stay in core during the whole

run. The 21 major subroutines can be loaded one at a time. Thus the program

usually needs less than 608 K words of core to run although it consists of more

than 10,000 statements.

The input, output and internal binary files are fully compatible with our

pattern recognition program ARTHUR [8].

UVFA can be run interactively or in batch mode and has graphical output

routines for Tektronix 4010/4014 terminals, Calcomp plotter or line printer.

Figure 4 shows the general setup of the program.

Figure 4

PRICO does a principal component analysis with or without communality

iteration [2]. MLULSCA and PARAMA are the nonlinear least squares projection

routines for multidimensional scaling and parametric mapping. The underlying

linear and nonlinear factors can be plotted with the routines PRIPLO (line

printer plot), CALPLO (Calcomp plot) or TEKPLO (Tektromix graphics terminal

plot). For additional error analysis the linear factors can be backtransformed

by calling KATRAN (Karhunen-Loeve-Transforation) and BACKTR. The program also

assists with the interpretation of the factors by calling ANALYS (ordering of

the factors and loadings and performing various tests for finding the intrinsic

dimensionality), HIER (performing a hierarchical cluster analysis), ROTOR and

ROTSUB for performing various kinds of rotations.

There exist versions for 60 bit CDC computers and 32 bit DEC VAX computers.

The VAX version should be well compatible with other DEC and IBM computers. The

whole program is written in FORTRAN.
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APPLICATIONS

Among the various applications, three are discussed in more detail: A mass

spectral data set, a constitutional similarity set of chemical compounds and a

data set of physical parameters of biologically interesting compounds.

The first data set consists of the mass spectra of 11 mono and sesqui-

terpenes [10]. These are Isoprene (1), Myrcene (2), p-Cymene (3), S-Pinene (4),

Camphene (5), Limonene (6), a-Cedrene (7), Caryophyllene (8), 8-Selinene (9),

Santene (10), 6-Cadinene (11). Figure 5 shows the plot of the loadings of the

first two vectors of the factor weight matrix.

Figure 5

These two factors encounter 97% of the total variance. We see two clusters

of compounds; only compound 8 seems to lie somewhat in between. It turns out

that one cluster consists of the monoterpenes and Isoprene; the second is of

the sesquiterpenes. Compound 8 (Caryophyllene) should therefore belong to the

second cluster (see below). Since the first factor encounters already 94% of

the total variance there is clearly one main factor, i.e. there is one main

underlying fragmentation pattern.

The nonlinear multidimensional scaling configuration of our data in two

dimensions shows the separation of the two clusters very clearly (Fig. 6).

Figure 6

The very similar fragmentation pattern of Isoprene and the monoterpenes is

reflected by their close neighborhood within the cluster. The one dimensional

multidimensional scaling of the mass spectra (Fig. 7) corroborates that there

is mainly one underlying fragmentation pattern: The stress of the one dimensional

projection is almost as low as for two dimensions [11] (0.0031 and 0.008

respectively) and thus the intrinsic dimensionality is most likely one.

Figure 7
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In our second example, the data base consists of a distance matrix

D = (dij) i,j = 1,...,13 of another set of 13 terpene components. These are

Isoprene, four monoterpenes (Myrcene, Menthol, Camphene, Umbellulone), four

sesquiterpenes (Bisabolene, a-Cadinol, Eudesmol, Partheniol), three Diterpenes

(Dextropimaric Acid, Phyllocladene, Roylleanone) and one Triterpene ( -Amnyrin)

[12]. The distance measure d.. is the minimum chemical distance [13] between

the compounds i and j. It indicates the constitutional similarity between two

compounds. To perform a principal component analysis, a covariance matrix C

is generated from the distance matrix [14]:

d =. 2 (1 - C ij)l/2

We again get two linear factors (85.8% and 13.1% partial variances) and a

plot of their loadings (Fig. 8) shows that there are no particular clusters of

compounds.

Figure 8

For further interpretation we look at the two dimensional nonlinear

projection (Fig. 9).

Figure 9

The compounds are now clustered according to whether they are Mono, Sesqui, Di-

or Triterpenes. Again the stress for a one dimensional projection is almost

as low as for two dimensions (0.0087 and 0.00859, respectively) which suggests

that all these compounds are built by one major structural element, the isoprene

unit. This is indicated by the ordering of the compounds along the one dimensional

projection axis (not shown) according to their number of isoprene units.

The third example corroborates some results of a linear factor analysis

(principal component analysis) performed by R. D. Cramer on a data set of 10
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physical parameters of 44 organic compounds [15]. Cramer obtains two linear

factors with 75.5% and 21% partial variance. A nonlinear projection of the

compounds in a two dimensional space shows no distinct clusters of the conpounds

(Fig. 10).

Figure 10

Since the data points are not lying along a line but they are spread almost

equally in both directions, the intrinsic dimensionality seems to be two. An

attempt to project the data in a one dimensional space results in a very inter-

esting pattern of a plot of the calculated distances a.. versus the original1J

d.. (see above) of the configuration (Fig. 11).

Figure 11

Although most of the distance points lie close to the diagonal which indicates

that most of the compounds can be fairly well fit in one dimension, some of

them lie almost along an axis perpendicular to the diagonal. This most likely

indicates that there is one major and one minor nonlinear factor in the two

dimensional space. This is, however, subject to further investigation.



i 11

CONCLUS ION

The examples show that the combination of principal component analysis with

nonlinear least squares projection techniques is a very powerful tool for the

determination of the intrinsic dimensionality and the interpretation of the

factors. Our underlying variables factor analysis program UVFA [9] provides

a convenient way for a complete factor and nonlinear projection analysis of

any data set.
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FIGURE CAPTIONS

Figure 1: Three dimensional representation of measurement vectors.

Figure 2: Three dimensional data points lying on a nonlinear surface.

Figure 3: Comparison of Principal Component, Multidimensional Scaling and

Parametric Mapping Analysis.

Figure 4: General Schematic of the UVFA program.

Figure 5: Plot of the loadings of the first two factors of the terpene

mass spectral data.

Figure 6: Two dimensional nonlinear projection of terpene mass spectral data.

Figure 7: One dimensional projection of terpene mass spectral data.

Figure 8: Factor loadings of minimum chemical distance data of 13 terpenes.

Figure 9: Two dimensional projection of the minimum chemical distance terpene

data.

Figure 10: Two dimensional nonlinear projection of 10 physical parameters/

44 compound data.

Figure 11: Original versus calculated distances of the one dimensional optimum

configuratio of the 10 physical parameters/44 compound data.
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